기체의 부피를 질량으로 환산 하는 공식
우리가 너무 친밀하다 못해 의식조차 안 하는 공기
그런데 우리가 마시고 있는 공기는 질량이 얼마나 될까요?
기체의 부피를 질량으로 환산해서 구하는 법칙으로 이상기체 법칙을 많이 사용합니다. 이상기체 법칙에 근간이 된 보일의 법칙(압력과 부피), 샤를의 법칙(온도와 부피) 등이 현실에서 입증되었기 때문에, 사실상 현실의 기체에 대입해도 어느 정도는 들어맞습니다
이상기체 법칙은
PV =nRT
=(w/m)RT 로 나타내어지며,
P:압력 (1 atm=1기압 기준)
V:체적 (L)
n:몰수(=W/M)
R:기체상수 0.082 atm*L/mol*K
M:분자량 g/mol(주-공기의 분자량은 M = 29.2 입니다.)
W:질량 g
T:절대온도 K (273+C)-0℃ 기준
으로 구분됩니다.
0℃의 온도에
1기압(1atm=0.101325Mpa=101.325Kpa=101325Pa=760Torr)의 압력인 상태에서
공기 1L의 질량은 몇 g이 나오는가 계산을 해보면
(부피 1L는 1dm³(1세제곱데시미터)를 가리키는 특별한 이름으로 정의됩니다.
이상기체 법칙에서 질량을 구하려면
(m*P*V) M(g/mol) * V(L) * P(atm)
W= ----------- =--------------------------------------- (g)
(R*T) R(0.082atm*L/mol*K) * 273K
=(29.2*1L*1atm)/(0.082*273 ) (g)
=1.30438667g의 질량이 나옵니다
하지만 이상 기체 법칙도 단점이 있는데, 어디까지나 이상 기체를 서술하는 법칙이니만큼 이상 기체가 아닌 실 기체에 이 법칙을 적용하면 오차가 생깁니다.
하지만 일상적인 상황인 1bar 부근의 압력 또는 섭씨 50도 미만의 정도의 온도에서는 그 오차는 사실상 무시할 수 있어서 아직 기초적인 학부 실험 정도에서는 쓰이고 있습니다.
그리고 이런 문제점을 보완하기 위해 현재까지도 연구를 거듭하고 있고, 분자 간 인력과 부피를 고려한 판데르발스 상태 방정식(간단하면서도 이상 기체 법칙보다는 정확하지만, 현장에서는 부정확성때문에 사용을 잘 안 한다고 합니다...),Peng-Robinson(팽 로빈슨) 상태방정식을 사용합니다.
출처)
이상기체 법칙-위키백과
사진
Comments